Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Vet Microbiol ; 283: 109781, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20244970

ABSTRACT

FIP is a fatal feline disease caused by FIPV. Two drugs (GS441524 and GC376) target FIPV and have good therapeutic effect when administered by subcutaneous injection. However, subcutaneous injection has limitations compared with oral administration. Additionally, the oral efficacy of the two drugs has not been determined. Here, GS441524 and GC376 were shown to efficiently inhibit FIPV-rQS79 (recombination virus with a full-length field type I FIPV and the spike gene replaced with type II FIPV) and FIPV II (commercially available type II FIPV 79-1146) at a noncytotoxic concentration in CRFK cells. Moreover, the effective oral dose was determined via the in vivo pharmacokinetics of GS441524 and GC376. We conducted animal trials in three dosing groups and found that while GS441524 can effectively reducing the mortality of FIP subjects at a range of doses, GC376 only reducing the mortality rate at high doses. Additionally, compared with GC376, oral GS441524 has better absorption, slower clearance and a slower rate of metabolism. Furthermore, there was no significant difference between the oral and subcutaneous pharmacokinetic parameters. Collectively, our study is the first to evaluate the efficacy of oral GS441524 and GC376 using a relevant animal model. We also verified the reliability of oral GS441524 and the potential of oral GC376 as a reference for rational clinical drug use. Furthermore, the pharmacokinetic data provide insights into and potential directions for the optimization of these drugs.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Reproducibility of Results , Administration, Oral
2.
Oral Dis ; 28 Suppl 2: 2492-2499, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2322192

ABSTRACT

Transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur through saliva and aerosol droplets deriving from the upper aerodigestive tract during coughing, sneezing, talking, and even during oral inspection or dental procedures. The aim of this study was to assess in vitro virucidal activity of commercial and experimental mouthwashes against a feline coronavirus (FCoV) strain. Commercial and experimental (commercial-based products with addition of either sodium dodecyl sulfate (SDS) or thymus vulgaris essential oil (TEO) at different concentrations) mouthwashes were placed in contact with FCoV for different time intervals, that is, 30 s (T30), 60 s (T60), and 180 s (T180); subsequently, the virus was titrated on Crandell Reese Feline Kidney cells. An SDS-based commercial mouthwash reduced the viral load by 5 log10 tissue culture infectious dose (TCID)50 /50 µl at T30 while a cetylpyridinium (CPC)-based commercial mouthwash was able to reduce the viral titer of 4.75 log10 at T60. Furthermore, five experimental mouthwashes supplemented with SDS reduced the viral titer by 4.75-5 log10 according to a dose- (up to 4 mM) and time-dependent fashion.


Subject(s)
COVID-19 , Coronavirus, Feline , Cats , Animals , Mouthwashes/pharmacology , SARS-CoV-2 , Cetylpyridinium
3.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2305997

ABSTRACT

The current study was initiated when our specific-pathogen-free laboratory toms developed unexpectedly high levels of cross-reactive antibodies to human SARS-CoV-2 (SCoV2) receptor binding domain (RBD) upon mating with feline coronavirus (FCoV)-positive queens. Multi-sequence alignment analyses of SCoV2 Wuhan RBD and four strains each from FCoV serotypes 1 and 2 (FCoV1 and FCoV2) demonstrated an amino acid sequence identity of 11.5% and a similarity of 31.8% with FCoV1 RBD (12.2% identity and 36.5% similarity for FCoV2 RBD). The sera from toms and queens cross-reacted with SCoV2 RBD and reacted with FCoV1 RBD and FCoV2 spike-2, nucleocapsid, and membrane proteins, but not with FCoV2 RBD. Thus, the queens and toms were infected with FCoV1. Additionally, the plasma from six FCoV2-inoculated cats reacted with FCoV2 and SCoV2 RBDs, but not with FCoV1 RBD. Hence, the sera from both FCoV1-infected cats and FCoV2-infected cats developed cross-reactive antibodies to SCoV2 RBD. Furthermore, eight group-housed laboratory cats had a range of serum cross-reactivity to SCoV2 RBD even 15 months later. Such cross-reactivity was also observed in FCoV1-positive group-housed pet cats. The SCoV2 RBD at a high non-toxic dose and FCoV2 RBD at a 60-400-fold lower dose blocked the in vitro FCoV2 infection, demonstrating their close structural conformations essential as vaccine immunogens. Remarkably, such cross-reactivity was also detected by the peripheral blood mononuclear cells of FCoV1-infected cats. The broad cross-reactivity between human and feline RBDs provides essential insights into developing a pan-CoV vaccine.


Subject(s)
COVID-19 , Coronavirus, Feline , Cats , Animals , Humans , SARS-CoV-2 , COVID-19/prevention & control , Antibodies, Viral , Leukocytes, Mononuclear/metabolism , Serogroup , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
4.
Viruses ; 15(4)2023 03 23.
Article in English | MEDLINE | ID: covidwho-2290598

ABSTRACT

After an incubation period of weeks to months, up to 14% of cats infected with feline coronavirus (FCoV) develop feline infectious peritonitis (FIP): a potentially lethal pyogranulomatous perivasculitis. The aim of this study was to find out if stopping FCoV faecal shedding with antivirals prevents FIP. Guardians of cats from which FCoV had been eliminated at least 6 months earlier were contacted to find out the outcome of their cats; 27 households were identified containing 147 cats. Thirteen cats were treated for FIP, 109 cats shed FCoV and 25 did not; a 4-7-day course of oral GS-441524 antiviral stopped faecal FCoV shedding. Follow-up was from 6 months to 3.5 years; 11 of 147 cats died, but none developed FIP. A previous field study of 820 FCoV-exposed cats was used as a retrospective control group; 37 of 820 cats developed FIP. The difference was statistically highly significant (p = 0.0062). Cats from eight households recovered from chronic FCoV enteropathy. Conclusions: the early treatment of FCoV-infected cats with oral antivirals prevented FIP. Nevertheless, should FCoV be re-introduced into a household, then FIP can result. Further work is required to establish the role of FCoV in the aetiology of feline inflammatory bowel disease.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Feline Infectious Peritonitis/drug therapy , Feline Infectious Peritonitis/prevention & control , Retrospective Studies , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
5.
J Vet Med Sci ; 85(4): 443-446, 2023 Mar 30.
Article in English | MEDLINE | ID: covidwho-2274278

ABSTRACT

The geneLEAD VIII is a fully-automated nucleic acid extraction/quantitative PCR equipment developed by Precision System Science Co., Ltd., (PSS). To take advantage of its capability, we developed a quantitative assay system to measure growth of animal viruses. The system was used to assay one of the Chinese herbal extracts whose anti-malarial activities were previously reported and demonstrated its dose-dependent anti-viral activity against feline infectious peritonitis virus (FIPV), a feline coronavirus causing the fatal diseases in cats, and relatively low cell toxicity. The assay developed in this study is useful to screen antiviral drugs and the anti-FIPV activity of the herbal extract identified have a potential to lead to development of new drugs against FIPV and other coronaviruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).


Subject(s)
Antineoplastic Agents , COVID-19 , Cat Diseases , Coronavirus, Feline , Peritonitis , Animals , Cats , Coronavirus, Feline/genetics , SARS-CoV-2/genetics , COVID-19/veterinary , Antiviral Agents/therapeutic use , Polymerase Chain Reaction/veterinary , Peritonitis/veterinary , COVID-19 Testing/veterinary , Cat Diseases/drug therapy
6.
J Feline Med Surg ; 24(9): 905-933, 2022 09.
Article in English | MEDLINE | ID: covidwho-2283901

ABSTRACT

CLINICAL IMPORTANCE: Feline infectious peritonitis (FIP) is one of the most important infectious diseases and causes of death in cats; young cats less than 2 years of age are especially vulnerable. FIP is caused by a feline coronavirus (FCoV). It has been estimated that around 0.3% to 1.4% of feline deaths at veterinary institutions are caused by FIP. SCOPE: This document has been developed by a Task Force of experts in feline clinical medicine as the 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines to provide veterinarians with essential information to aid their ability to recognize cats presenting with FIP. TESTING AND INTERPRETATION: Nearly every small animal veterinary practitioner will see cases. FIP can be challenging to diagnose owing to the lack of pathognomonic clinical signs or laboratory changes, especially when no effusion is present. A good understanding of each diagnostic test's sensitivity, specificity, predictive value, likelihood ratio and diagnostic accuracy is important when building a case for FIP. Before proceeding with any diagnostic test or commercial laboratory profile, the clinician should be able to answer the questions of 'why this test?' and 'what do the results mean?' Ultimately, the approach to diagnosing FIP must be tailored to the specific presentation of the individual cat. RELEVANCE: Given that the disease is fatal when untreated, the ability to obtain a correct diagnosis is critical. The clinician must consider the individual patient's history, signalment and comprehensive physical examination findings when selecting diagnostic tests and sample types in order to build the index of suspicion 'brick by brick'. Research has demonstrated efficacy of new antivirals in FIP treatment, but these products are not legally available in many countries at this time. The Task Force encourages veterinarians to review the literature and stay informed on clinical trials and new drug approvals.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cat Diseases/diagnosis , Cat Diseases/drug therapy , Cats , Feline Infectious Peritonitis/diagnosis , Feline Infectious Peritonitis/drug therapy
7.
J Feline Med Surg ; 24(10): 943-953, 2022 10.
Article in English | MEDLINE | ID: covidwho-2255553

ABSTRACT

OBJECTIVES: Feline infectious peritonitis (FIP), caused by genetic mutants of feline enteric coronavirus known as FIPV, is a highly fatal disease of cats with no currently available vaccine or US Food and Drug Administration-approved cure. Dissemination of FIPV in affected cats results in a range of clinical signs, including cavitary effusions, anorexia, fever and lesions of pyogranulomatous vasculitis and perivasculitis, with or without central nervous system or ocular involvement. The objectives of this study were to screen an array of antiviral compounds for anti-FIPV (serotype II) activity, determine cytotoxicity safety profiles of identified compounds with anti-FIPV activity and strategically combine identified monotherapies to assess compound synergy against FIPV in vitro. Based upon clinically successful combination treatment strategies for human patients with HIV and hepatitis C virus infections, we hypothesized that a combined anticoronaviral therapy approach featuring concurrent multiple mechanisms of drug action would result in an additive or synergistic antiviral effect. METHODS: This study screened 90 putative antiviral compounds for efficacy and cytotoxicity using a multimodal in vitro strategy, including plaque bioassays, real-time RT-PCR viral inhibition and cytotoxicity assays. RESULTS: Through this process, we identified 26 compounds with effective antiviral activity against FIPV, representing a variety of drug classes and mechanisms of antiviral action. The most effective compounds include GC376, GS-441524, EIDD2081 and EIDD2931. We documented antiviral efficacy for combinations of antiviral agents, with a few examined drug combinations demonstrating evidence of limited synergistic antiviral activity. CONCLUSIONS AND RELEVANCE: Although evidence of compound synergy was identified for several combinations of antiviral agents, monotherapies were ultimately determined to be the most effective in the inhibition of viral transcription.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cat Diseases/drug therapy , Cats , Coronavirus, Feline/genetics , Drug Combinations , Humans , Serogroup
8.
Comp Immunol Microbiol Infect Dis ; 94: 101962, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242265

ABSTRACT

Feline coronavirus (FCoV) is a highly contagious and ubiquitous virus of domestic cats and wild felids. Feline infectious peritonitis (FIP) is a fatal, systemic disease caused by FCoV infection when spontaneous mutations of the viral genome take place. The aims of this study were primarily to determine the prevalence of seropositivity for FCoV in different populations of cats in Greece and assess risk factors for seropositivity. A total of 453 cats were prospectively enrolled in the study. A commercially available IFAT kit was used for the detection of FCoV IgG antibodies in serum. Overall, 55 (12.1 %) of the 453 cats were seropositive for FCoV. Based on multivariable analysis, factors associated with FCoV-seropositivity included cats adopted as strays and contact with other cats. This is the first extensive study on the epidemiology of FCoV in cats from Greece and one of the largest worldwide. Feline coronavirus infection is relatively common in Greece. Therefore, it is necessary to establish optimal strategies for the prevention of FCoV infection, considering the high-risk groups of cats identified in this study.


Subject(s)
Cat Diseases , Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Seroepidemiologic Studies , Greece , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/diagnosis , Coronavirus, Feline/genetics , Risk Factors
9.
Virus Res ; 326: 199059, 2023 03.
Article in English | MEDLINE | ID: covidwho-2221478

ABSTRACT

Feline coronavirus (FCoV) includes two biotypes: feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). Although both biotypes can infect cats, their pathogenicities differ. The FIPV biotype is more virulent than the FECV biotype and can cause peritonitis or even death in cats, while most FECV biotypes do not cause lesions. Even pathogenic strains of the FECV biotype can cause only mild enteritis because of their very low virulence. This article reviews recent progress in FCoV research with regard to FCoV etiological characteristics; epidemiology; clinical symptoms and pathological changes; pathogenesis; and current diagnosis, prevention and treatment methods. It is hoped that this review will provide a reference for further research on FCoV and other coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Coronavirus, Feline/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/diagnosis
10.
J Biol Chem ; 299(3): 102976, 2023 03.
Article in English | MEDLINE | ID: covidwho-2220925

ABSTRACT

Feline infectious peritonitis (FIP) is a serious viral illness in cats, caused by feline coronavirus. Once a cat develops clinical FIP, the prognosis is poor. The effective treatment strategy for coronavirus infections with immunopathological complications such as SARS-CoV-2, MERS, and FIP is focused on antiviral and immunomodulatory agents to inhibit virus replication and enhance the protective immune response. In this article we report the binding and conformational alteration of feline alphacoronavirus (FCoV) nucleocapsid protein by a novel compound K31. K31 noncompetitively inhibited the interaction between the purified nucleocapsid protein and the synthetic 5' terminus of viral genomic RNA in vitro. K31 was well tolerated by cells and inhibited FCoV replication in cell culture with a selective index of 115. A single dose of K31inhibited FCoV replication to an undetectable level in 24 h post treatment. K31 did not affect the virus entry to the host cell but inhibited the postentry steps of virus replication. The nucleocapsid protein forms ribonucleocapsid in association with the viral genomic RNA that serves as a template for transcription and replication of the viral genome. Our results show that K31 treatment disrupted the structural integrity of ribonucleocapsid in virus-infected cells. After the COVID-19 pandemic, most of the antiviral drug development strategies have focused on RdRp and proteases encoded by the viral genome. Our results have shown that nucleocapsid protein is a druggable target for anticoronavirus drug discovery.


Subject(s)
Antiviral Agents , Coronavirus, Feline , Feline Infectious Peritonitis , Nucleocapsid Proteins , Virus Replication , Animals , Cats , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cell Culture Techniques , Coronavirus, Feline/drug effects , Coronavirus, Feline/physiology , Feline Infectious Peritonitis/drug therapy , RNA, Viral/genetics , Virus Replication/drug effects
11.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216967

ABSTRACT

Viruses contribute significantly to the global decline of honey bee populations. One way to limit the impact of such viruses is the introduction of natural antiviral compounds from fungi as a component of honey bee diets. Therefore, we examined the effect of crude organic extracts from seven strains of the fungal genus Talaromyces in honey bee diets under laboratory conditions. The strains were isolated from bee bread prepared by honey bees infected with chronic bee paralysis virus (CBPV). The antiviral effect of the extracts was also quantified in vitro using mammalian cells as a model system. We found that three extracts (from strains B13, B18 and B30) mitigated CBPV infections and increased the survival rate of bees, whereas other extracts had no effect (B11 and B49) or were independently toxic (B69 and B195). Extract B18 inhibited the replication of feline calicivirus and feline coronavirus (FCoV) in mammalian cells, whereas extracts B18 and B195 reduced the infectivity of FCoV by ~90% and 99%, respectively. Our results show that nonpathogenic fungi (and their products in food stores) offer an underexplored source of compounds that promote disease resistance in honey bees.


Subject(s)
Ascomycota , Coronavirus, Feline , RNA Viruses , Talaromyces , Cats , Bees , Animals , Antiviral Agents/pharmacology , Paralysis , Mammals
12.
Viruses ; 14(11)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2123863

ABSTRACT

From 2019 to 2021, a retrospective molecular study was conducted in the Campania region (southern Italy) to determine the prevalence of viral diseases in domestic cats. A total of 328 dead animals were analyzed by Real-Time PCR for the presence of feline panleukopenia virus (FPV), feline leukemia virus (FeLV), feline enteric coronavirus (FCoV), rotavirus (RVA), feline herpesvirus type 1 (FHV-1), and feline calicivirus (FCV). The possible presence of SARS-CoV-2 was also investigated by Real-Time PCR. The cats included in this study were specifically sourced and referred by local veterinarians and local authorities to the Zooprofilactic Experimental Institute of Southern Italy (IZSM) for pathological evaluation. The samples consisted of owners, catteries, and stray cats. Results revealed: 73.5% positive cats for FPV (189/257), 23.6% for FeLV (21/89), 21.5% for FCoV (56/266), 11.4% for RVA (16/140), 9.05% for FeHV-1 (21/232), and 7.04 for FCV (15/213). In contrast, SARS-CoV-2 was never detected. FPV was more prevalent in winter (p = 0.0027). FCoV FHV-1, FCV, and RVA predominated in autumn, whereas FeLV predominated in summer. As expected, viral infections were found more frequently in outdoor and shelter cats than in indoor ones, although no statistical association was found between animal lifestyle and viral presence. The study showed a high prevalence of FPV, FeLV, and FCoV and a moderate prevalence of RVA, FHV-1, and FCV. Moreover, the prevalence of these pathogens varied among the cat populations investigated.


Subject(s)
COVID-19 , Calicivirus, Feline , Coronavirus, Feline , Virus Diseases , Cats , Animals , Retrospective Studies , Prevalence , Antibodies, Viral , SARS-CoV-2/genetics , Feline Panleukopenia Virus , Leukemia Virus, Feline , Coronavirus, Feline/genetics , Virus Diseases/veterinary
13.
Viruses ; 14(11)2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2099856

ABSTRACT

Feline infectious peritonitis (FIP) is a fatal disease of cats that currently lacks licensed and affordable vaccines or antiviral therapeutics. The disease has a spectrum of clinical presentations including an effusive ("wet") form and non-effusive ("dry") form, both of which may be complicated by neurologic or ocular involvement. The feline coronavirus (FCoV) biotype, termed feline infectious peritonitis virus (FIPV), is the etiologic agent of FIP. The objective of this study was to determine and compare the in vitro antiviral efficacies of the viral protease inhibitors GC376 and nirmatrelvir and the nucleoside analogs remdesivir (RDV), GS-441524, molnupiravir (MPV; EIDD-2801), and ß-D-N4-hydroxycytidine (NHC; EIDD-1931). These antiviral agents were functionally evaluated using an optimized in vitro bioassay system. Antivirals were assessed as monotherapies against FIPV serotypes I and II and as combined anticoronaviral therapies (CACT) against FIPV serotype II, which provided evidence for synergy for selected combinations. We also determined the pharmacokinetic properties of MPV, GS-441524, and RDV after oral administration to cats in vivo as well as after intravenous administration of RDV. We established that orally administered MPV at 10 mg/kg, GS-441524 and RDV at 25 mg/kg, and intravenously administered RDV at 7 mg/kg achieves plasma levels greater than the established corresponding EC50 values, which are sustained over 24 h for GS-441514 and RDV.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Assay
14.
J Virol Methods ; 310: 114628, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2061611

ABSTRACT

Enrichment of viral infectious titers following its propagation by cell culture is desirable for various experimental studies. The performance of an ultrafiltration (UF) process to concentrate infectious titers of non-enveloped Canine parvovirus 2 (CPV-2) and enveloped Feline coronavirus (FCoV) obtained from cell culture supernatants was evaluated in this study, and compared with ultracentrifugation (UC) process. A mean gain of > 1.0 log10 TCID50/mL was obtained for CPV-2 with UF, which was comparable with the gain obtained by UC. On the other hand, the gain was lower (0.7-1.0 log10 TCID50/mL) for FCoV with UF in contrast to UC (> 2.0 log10 TCID50/mL). However, the lower retentate volume following UC (∼120 fold) compared to that following UF (∼10 fold) for either of the viruses suggests a trend of increased infectious titer retention in UF concentrates relative to UC concentrates. The simplistic UF process evaluated here thus has the potential for use in applications requiring increased infectious titers of CPV-2 and FCoV.


Subject(s)
Coronavirus, Feline , Parvovirus, Canine , Viruses , Cats , Dogs , Animals , Ultrafiltration , Cell Culture Techniques
15.
Viruses ; 14(9)2022 09 14.
Article in English | MEDLINE | ID: covidwho-2033150

ABSTRACT

This is the first report on a clinical follow-up and postmortem examination of a cat that had been cured of feline infectious peritonitis (FIP) with ocular manifestation by successful treatment with an oral multicomponent drug containing GS-441524. The cat was 6 months old when clinical signs (recurrent fever, lethargy, lack of appetite, and fulminant anterior uveitis) appeared. FIP was diagnosed by ocular tissue immunohistochemistry after enucleation of the affected eye. The cat was a participant in a FIP treatment study, which was published recently. However, 240 days after leaving the clinic healthy, and 164 days after the end of the 84 days of treatment, the cured cat died in a road traffic accident. Upon full postmortem examination, including histopathology and immunohistochemistry, there were no residual FIP lesions observed apart from a generalized lymphadenopathy due to massive lymphoid hyperplasia. Neither feline coronavirus (FCoV) RNA nor FCoV antigen were identified by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry, respectively, in any tissues or body fluids, including feces. These results prove that oral treatment with GS-441524 leads to the cure of FIP-associated changes and the elimination of FCoV from all tissues.


Subject(s)
Coronavirus, Feline , Feline Infectious Peritonitis , Adenosine/analogs & derivatives , Animals , Antiviral Agents/therapeutic use , Autopsy , Cats , Coronavirus, Feline/genetics , Follow-Up Studies , Humans , RNA
16.
Res Vet Sci ; 152: 524-529, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2031670

ABSTRACT

Infection with feline coronavirus (FCoV) is a major problem in multiple-cat households, where many cats are kept together in a small space such as catteries and shelters. Sixty cats from 19 breeding catteries included in the study were evaluated for their shedding persistency and intensity patterns using qPCR identification of FCoV in feces. Cats were identified based on shedding persistency as non-shedders (NS) if all four samples negative, intermittent shedders (IS) when at least one positive and one negative sampling followed by another positive sampling, persistent shedders (PS) if all four samples positive and shedders with unclear status (US) if the shedding patterns could not be determined based on only 4 samples. There were 11 NS (18%), 15 IS (25%) and 15 PS (25%) and in 19/60 cats (32%), the shedding patterns could not be determined based only on four samplings. The intensity of shedding was evaluated based on the total number of FCoV particles shed during the 12 months of the study. There were 11 non-shedders (18%), 2 very low intensity shedders (3%), 9 low intensity shedders (15%), 25 medium intensity shedders (42%) and 13 high intensity shedders (22%). Intermittent shedders were shedding significantly lower FCoV particles compared to the persistent shedders (p = 0.0082). Permanent shedders represent the most important source of FCoV infection in multi-cat households and identifying permanent shedders in is the key to minimize the viral load in the environment to control FCoV in a shelters and breeding catteries.


Subject(s)
Cat Diseases , Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Czech Republic/epidemiology , Virus Shedding , Feces , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Cat Diseases/epidemiology
18.
Arch Razi Inst ; 77(5): 1709-1714, 2022 10.
Article in English | MEDLINE | ID: covidwho-2006668

ABSTRACT

Feline coronavirus (FCoV) is an enveloped single-stranded RNA virus, affecting wild and domestic cats. Feline infectious peritonitis viruses (FIPV) variants of FCoV cause fatal peritonitis affecting approximately 5% of FCoV infected animals. The present study aimed to detect and isolate the feline infectious peritonitis virus for the first time in Iraq. In this study, 50 samples (fecal swab and peritoneal fluid) were collected from suspected pet cats from different areas of Baghdad, Iraq. The very suitable age was under two years old.  Real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) was used to detect Feline infectious peritonitis in infected collected samples by the amplification of spike protein (S). The result of real-time RT-PCR revealed that out of 50 samples from suspected cats, 10 samples were positive for FIPV. Moreover, 10 positive samples by real-time RT-PCR were used for the isolation of the virus in chicken embryo fibroblast cell culture. Subsequently, the isolated virus was detected by real-time RT-PCR and then by conventional RT-PCR, followed by electrophoresis.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Chick Embryo , Animals , Cats , Feline Infectious Peritonitis/diagnosis , Coronavirus, Feline/genetics , Real-Time Polymerase Chain Reaction/veterinary , Iraq
19.
J Virol ; 96(17): e0090722, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2001774

ABSTRACT

The rapid global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused serious health problems, highlighting the urgent need for antiviral drugs. The viral main protease (Mpro) plays an important role in viral replication and thus remains the target of choice for the prevention or treatment of several viral diseases due to high sequence and structural conservation. Prolonged use of viral protease inhibitors can lead to the development of mutants resistant to those inhibitors and to many of the available antiviral drugs. Here, we used feline infectious peritonitis virus (FIPV) as a model to investigate its development of resistance under pressure from the Mpro inhibitor GC376. Passage of wild-type (WT) FIPV in the presence of GC376 selected for a mutation in the nsp12 region where Mpro cleaves the substrate between nsp12 and nsp13. This mutation confers up to 3-fold resistance to GC376 and nirmatrelvir, as determined by EC50 assay. In vitro biochemical and cellular experiments confirmed that FIPV adapts to the stress of GC376 by mutating the nsp12 and nsp13 hydrolysis site to facilitate cleavage by Mpro and release to mediate replication and transcription. Finally, we demonstrate that GC376 cannot treat FIP-resistant mutants that cause FIP in animals. Taken together, these results suggest that Mpro affects the replication of coronaviruses (CoVs) and the drug resistance to GC376 by regulating the amount of RdRp from a distant site. These findings provide further support for the use of an antiviral drug combination as a broad-spectrum therapy to protect against contemporary and emerging CoVs. IMPORTANCE CoVs cause serious human infections, and antiviral drugs are currently approved to treat these infections. The development of protease-targeting therapeutics for CoV infection is hindered by resistance mutations. Therefore, we should pay attention to its resistance to antiviral drugs. Here, we identified possible mutations that lead to relapse after clinical treatment of FIP. One amino acid substitution in the nsp12 polymerase at the Mpro cleavage site provided low-level resistance to GC376 after selection exposure to the GC376 parental nucleoside. Resistance mutations enhanced FIPV viral fitness in vitro and attenuated the therapeutic effect of GC376 in an animal model of FIPV infection. Our research explains the evolutionary characteristics of coronaviruses under antiviral drugs, which is helpful for a more comprehensive understanding of the molecular basis of virus resistance and provides important basic data for the effective prevention and control of CoVs.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Coronavirus, Feline , Drug Resistance, Viral , Mutation , Protease Inhibitors , Animals , Antiviral Agents/pharmacology , Cats/virology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/genetics , Coronavirus 3C Proteases/metabolism , Coronavirus, Feline/drug effects , Coronavirus, Feline/enzymology , Coronavirus, Feline/genetics , Drug Resistance, Viral/genetics , Protease Inhibitors/pharmacology
20.
J S Afr Vet Assoc ; 93(2): 112-115, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1989040

ABSTRACT

Historically, feline infectious peritonitis (FIP) has been considered almost invariably fatal. The recent COVID-19 pandemic has fuelled research in coronavirus pathophysiology and treatment. An unintended consequence is that we now have an effective treatment accessible for FIP. This paper reports on the successful resolution of immunohistochemistry-confirmed effusive FIP in an adolescent cat in South Africa following monotherapy with remdesivir at 4.9-5.6 mg/kg daily for 80 days.


Subject(s)
Cat Diseases , Coronavirus, Feline , Feline Infectious Peritonitis , Animals , Cats , Coronavirus, Feline/drug effects , Feline Infectious Peritonitis/drug therapy , South Africa , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL